Biology Task Force Meeting

An Introduction to the Spallation Neutron Source

lan Anderson

Director, Experimental Facilities

October 24, 2002

The Spallation Neutron Source

www.sns.gov

- The SNS will begin operation in 2006
- At 1.4 MW it will be ~8x ISIS, the world's leading pulsed spallation source
- The peak thermal neutron flux will be ~50-100x ILL
- SNS will be the world's leading facility for neutron scattering
- It will be a short drive from HFIR, a reactor source with a flux comparable to the ILL

Scientific Scope and Vision for CNMS

SPALLATION NEUTRON SOURCE

Center for Nanophase Materials Sciences

- A highly collaborative and multidisciplinary research center
- Co-located with the Spallation Neutron Source (SNS) and the Joint Institute for Neutron Sciences (JINS) on ORNL's "new campus"
- JINS: Housing and dining facilities, auditorium, classrooms, for research visitors and students
- SNS: Will provide access to unique neutron scattering capabilities for nanoscience
- CNMS: Provides urgently needed capabilities for materials synthesis, nanofabrication, and modeling

The CNMS Concept:
Create scientific synergies
to accelerate discovery
in nanoscale science

SNS - Guiding Principles

- SNS will provide high availability, high reliability operation of the world's most powerful pulsed neutron source (cf white paper)
- It will operate as a User Facility to support peer reviewed research on a Best-in-Class suite of instruments
 - Research conducted at SNS will be at the forefront of biology, chemistry, condensed matter physics, materials science and engineering
- SNS will have the capability to advance the state of the art in spallation neutron source technology. This includes:
 - R&D in accelerators, target, and instruments to keep SNS at the forefront
 - Planned enhancement of SNS performance through upgrades of the complex and ongoing instrument development as part of the normal operating life of the facility

Project Status

- The FY 2002 request was \$291M, fully funded
- The FY 2003 request is \$225M, as anticipated
- Overall project design is 83% complete
- Overall the project is 49% complete (through August 2002) and within budget and schedule constraints
 - \$1.4B and June 2006 completion
- Significant site construction activities are underway
- There is good progress on all of the technical components: front end, superconducting linac, ring, target & instruments
- We continue to have excellent safety performance
 - >1,000,000 construction site work hours without lost workday injury
- Post-handoff MOAs signed with LBNL, BNL, draft LANL others to follow, partner lab relations good
 - Working through issues

SNS Site Global View

• Activities everywhere on site, multiple work fronts

SNS Construction

Assembly of the Target Monolith

Target Station

SNS Instrument Layout

2 - Backscattering Spectrometer – SNS Funded – Commission 2006

3 - High Pressure Diffractometer – IDT Funding TBD – Commission 2007

4A - Magnetism Reflectometer – SNS Funded – Commission 2006

5 - Cold Neutron Chopper Spectrometer – IDT DOE Funded – Commission 2007 1B - Disordered Mat'ls Diffractometer – IDT Funding TBD – Commission 2010

Funding TBD – mmission 2010
PROTONS

18 - Wide Angle Chopper Spectrometer – IDT DOE Funded – Commission 2007

17 - High Resolution Chopper Spectrometer – IDT Funding TBD – Commission 2008

13 - Fundamental Physics Beamline – IDT Funding TBD – Commission TBD

Reflectometer – SNS Funded – Commission 2006

4B - Liquids

6 - SANS -SNS Funded -Commission 2007

9 - Engineering Diffractometer – IDT CFI Funded – Commission 2008 12 - Single Crystal Diffractometer – IDT Funding TBD – Commission 2009

11A - Powder
Diffractometer –
SNS Funded –
Commission 2007

Instrument status

- We are past half-way (13/24):
 - 5 instruments funded within the project
 - 3 funded IDT's: ARCS, CNCS, Vulcan
 - DOE/BES approved plan for phased funding of 4 additional instruments!
 - Sequoia, SCD, High Pressure diffractometer, Disordered Materials Diffractometer
 - Fundamental physics facility (2 instruments).
- 3 Instruments at Letter of Intent stage
 - HYSPEC presentation approved
 - NSE (Julich) next EFAC
 - VISION next EFAC
- 1 new Letter of Intent
 - ASAP: Astrophysics, Symmetries and Applied Physics International collaboration (36 partners) proposing to use SNS epithermal flux to measure cross-sections

Beam line allocation

BL	Moderator		Instrument		
1a	H ₂	decoupled, poisoned			
1b	H ₂	decoupled, poisoned	Disordered Materials Diffractometer		
2	H ₂	decoupled, poisoned	Backscattering		
3	H ₂	decoupled, poisoned	High Pressure Diffractometer		
4a	H ₂	coupled	Magnetism Reflectometer		
4b	H ₂	coupled	Liquids Reflectometer		
5	H ₂	coupled	Cold Neutron Chopper Spectrometer		
6	H ₂	coupled	SANS		
7	water	decoupled, poisoned			
8a	water	decoupled, poisoned			
8b	water	decoupled, poisoned			
9	water	decoupled, poisoned	Vulcan		
10	H ₂	decoupled, poisoned			
11a	H ₂	decoupled, poisoned	Powder Diffractometer		
11b	H ₂	decoupled, poisoned			
12	H ₂	decoupled, poisoned	Single Crystal Diffractometer		
13	H ₂	coupled	Fundamental Physics		
14a	H ₂	coupled	Vision?		
14b	H ₂	coupled	NSE?		
15	H ₂	coupled	Hyspec		
16a	water	1 / 1			
16b		decoupled, poisoned			
17	water	decoupled, poisoned	Sequoia		
18	water	decoupled, poisoned	ARCS		

Moderator Type	Number	Approved	LOI's	Available
H ₂ decoupled, poisoned	8	5		3
H ₂ coupled	8	6	2	0
Ambient water	8	3	1	4

LOI's: NSE

Vision

ASAP

Q-Resolution Diagram for Elastic Instruments

Q-ω Space accessible for Inelastic Instruments

Timeline for scientific productivity

Scientific Input from the University Community

Since 1996, 50 workshops and conferences – more than 1000 attendees, representing over 100 universities, have provided input on SNS Instrumentation and science

Recent and Upcoming JINS Workshops:

Materials Science and Engineering, 10/ 2001- 160 attendees
Biological Systems, 4/2002 – 100 attendees
Solid State Chamistry and Forth Sciences, 2/2002

Solid State Chemistry and Earth Sciences, 3/2003

Neutrons and Nanoscience, 6/2003

Fundamental Neutron Physics, 4/2004

Major sponsors: ORAU, UT, ORNL, UT-B univ.

First American Conference on Neutron Scattering, Knoxville, TN, 6/2002 – 409 attendees

Sample outcome from
JINS Workshops:
JINS/ORAU/SNS/HFIR Structural
Biology Task Force

J. K. Blasie and S. H. White, co-chairs

J. Katsaras and coworkers, doped "bicelle" system

